Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides
نویسندگان
چکیده
The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%-15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97-7.8 and OR = 7.37, CI: 2.4-22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.
منابع مشابه
Field-collected permethrin-resistant Aedes aegypti from central Thailand contain point mutations in the domain IIS6 of the sodium channel gene (KDR).
One of the mechanisms responsible for pyrethroid resistance in mosquitoes is mutations in domain IIS6 of voltage-gated sodium channel gene (kdr). Aedes aegypti larvae were collected from the central provinces of Thailand (Bangkok, Prachin Buri and Ratchaburi) and colonized until they became adults. Partial fragment of kdr of permethrin-resistant mosquitoes were amplified by RT-PCR and sequenced...
متن کاملSodium Channel Mutations and Pyrethroid Resistance in Aedes aegypti
Pyrethroid insecticides are widely used to control insect pests and human disease vectors. Voltage-gated sodium channels are the primary targets of pyrethroid insecticides. Mutations in the sodium channel have been shown to be responsible for pyrethroid resistance, known as knockdown resistance (kdr), in various insects including mosquitoes. In Aedes aegypti mosquitoes, the principal urban vect...
متن کاملAssociation between Three Mutations, F1565C, V1023G and S996P, in the Voltage-Sensitive Sodium Channel Gene and Knockdown Resistance in Aedes aegypti from
Mutations in the voltage-sensitive sodium channel gene (Vssc) have been identified in Aedes aegypti and some have been associated with pyrethroid insecticide resistance. Whether these mutations cause resistance, alone or in combination with other alleles, remains unclear, but must be understood if mutations are to become markers for resistance monitoring. We describe High Resolution Melt (HRM) ...
متن کاملWidespread Distribution of a Newly Found Point Mutation in Voltage-Gated Sodium Channel in Pyrethroid-Resistant Aedes aegypti Populations in Vietnam
BACKGROUND Resistance of Aedes aegypti to photostable pyrethroid insecticides is a major problem for disease-vector control programs. Pyrethroids target the voltage-gated sodium channel on the insects' neurons. Single amino acid substitutions in this channel associated with pyrethroid resistance are one of the main factors that cause knockdown resistance in insects. Although kdr has been observ...
متن کاملCo-occurrence of Point Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Aedes aegypti Populations in Myanmar
BACKGROUND Single amino acid substitutions in the voltage-gated sodium channel associated with pyrethroid resistance constitute one of the main causative factors of knockdown resistance in insects. The kdr gene has been observed in several mosquito species; however, point mutations in the para gene of Aedes aegypti populations in Myanmar have not been fully characterized. The aim of the present...
متن کامل